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Abstract. The Kirchhoff Matrix Tree Theorem provides an efficient algorithm for determining 
t(G), the number of spanning trees of any graph G, in terms of a determinant. However for many 
special classes of graphs, one can avoid the evaluation of a determinant, as there are simple, 
explicit formulas that give the value of t(G). In this work we show that many of these formulas can 
be simply derived from known properties of Chebyshev polynomials. This is demonstrated for 
wheels, fans, ladders, Moebius ladders, and squares of cycles. The method is then used to derive a 
new spanning tree formula for the complete prism R.(m) = K., × C.. It is shown that 

+ m ,~-x 

where T.(x) is the n 'h order Chebyshev polynomial of the first kind. 

1. Introduction 

Herein we give der ivat ions  of  simple explicit  formulas  giving the number  of spanning 
trees for cer ta in  special  classes of  graphs .  W e  fol low the n o t a t i o n  and  t e rmino logy  
of the b o o k  [7]  by Hara ry .  F o r  any g raph  o r  m u l t i g r a p h  G, we deno te  by t(G) the 
total  n u m b e r  of  spann ing  trees of G, and  we let A(G) or  A deno te  the ad jacency  
mat r ix  of  G. The  ce lebra ted  Ki rchhof f  Ma t r i x  Tree T h e o r e m  [10], cf [7],  states that  
if D is the d i agona l  ma t r ix  of the degrees of  G, then the Ki rchhof f  ma t r ix  H defined 
as H = D --  A has all of its co-factors  equal  to t(G). O t h e r  me thods  for calculat ing 
t(G) are  as follows. Let  #1 > #2 > "'" > #p deno te  the eigenvalues of the H matr ix  
of a p po in t  graph.  Then  it is easily shown tha t  #p = 0. F u r t h e r m o r e ,  Ke l 'mans  and 
Che lnokov  [9]  have shown that  

FI #k. (1) 
k=l 

F r o m  this it is a s imple  ma t t e r  to der ive the result  of  Sachs [-14], cf [15], which 
states tha t  if G is r egu la r  of  degree r then 
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1_ 
Pk=l 

where 21 _< 2 2 < " "  _< ~p ---- r are the eigenvalues of the adjacency matrix A. Finally 
we state Temperley's result [21], cf [3], 

t(G) = pl-2 det(H + J) (3) 

where J is the p x p matrix all of whose elements are unity. Notice that this last 
formula has the advantage of expressing t(G) directly as a determinant rather than 
in terms of cofactors or eigenvalues. 

All of the above results lead to efficient algorithms for calculating t(G) for any 
graph G. However the required calculations can be tedious and there is certainly 
an advantage to having a simple explicit formula for special classes of graphs. For 
example, it is well-known that for the complete graph K~, t(Kp) = pp-2, and this 
follows immediately from (3). However, equations (1), (2), and (3) do not always 
yield such simple derivations of t(G) formulas. For example, A(Cp) is a circulant 
matrix, and explicit formulas for a circulant's eigenvalues can be found in Marcus 
and Minc 1-12]. Now although it is obvious that t(Cp) is p, the application of formula 
(2) does not easily demonstrate this fact, as the eigenvalue approach would require 
a verification of the somewhat surprising formula 

t(Cp) = p ~=tl-[ [2 -2cos (2=k/p)]  = p ~=t [4sin2(rck/P)] = p" (4) 

In this work we shall show that simple explicit formulas can be easily derived 
for some classes of graphs by using known properties of the Chebyshev polynomials. 
We derive a new formula for the complete prism R.(m) = K,,, x C.. We then show 
that similar approaches lead to easy proofs of the known formulas for: the wheel 
IV. = C,_ 1 + Kx, the Moebius ladder M,, the fan F, = P,_~ + K 1, the square of a 
cycle C 2, and the ladder L, = K z x P,. To this end we need to review some known 
properties. First we note that it is not difficult to show that ifx is an edge of G, then 
the number of trees which contain x is t(G/x) where G/x denotes the graph obtained 
by coalescing the endpoints of the edge x. This result together with the inclusion- 
exclusion principle yields the result, which is apparently due to Feussner [6], cf. 
Moon [13] that 

t ( c )  = - x) + t (G/x) .  (5) 

From this we see that if Gs denotes the graph that results from subdividing an edge 
z of G, then 

t(G~) = t(G/z) + 2t(G - z) = t(G) + t(G - z). (6) 

Likewise if @ denotes the result of adding an edge in parallel with an edge z of G, 
then 

t(@) = t(G) + t(G/z). (7) 

At this point, we shall digress to review some basic properties of Chebyshev 
polynomials. These will be used together with the above results to derive the new 
formulas in the subsequent section. 
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2. Some Properties of Chebyshev Polynomials and Fibonaeei Numbers 

Our primary reference for properties of the Chebyshev polynomials is Snyder [20]. 
First we define an n x n matrix 

2x - 1 0 0 

- 1  2x - 1  0 

0 --1 2x --1 

A°(x) = 0 0 - 1  0 

- I  

0 - 1  2x 

where all elements not shown are assumed to be zero. Further we recall that the 
Chebyshev polynomials of the first kind are defined by 

T.(x) = cos(n arccos x). (8) 

The Chebyshev polynomials of the second kind are defined by 

1 d T.(x) = sin(n arccos x) 
U._~ (x) = n ~-x sin(arccos x) " (9) 

It is easily verified that 

U.(x) - 2xU._~(x)  + U._2(x ) = 0. (10) 

It can then be shown from this recursion that by expanding det Am(x) one gets 

det A,.(x)  = U,,,(x) for m _> 1. (i 1) 

Furthermore by using standard methods for solving the recursion (10), one obtains 
the explicit formula 

U,.(x) = 2 ~  x + - x -  

Another interesting fact follows by comparing (12) with the well-known closed from 
formula for the Fibonacci numbers fro 

f,~ = ~ [ ( 1  2 - ~ - ) m  - (-1 ~ ) ' 1 ,  (13) 

namely 

1(3j2,= .  IC+2 ; (3 )ml (14, 
In the next section, we explore the use of the above facts to derive two new tree 
formulas. 
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3. The Formula for Complete Prisms 

Before on embarking on the proof, we digress slightly to observe some further 
properties of Chebyshev polynomials.  The  definition of U,(x) easily yields its zeros, 
and one verfies 

Fur ther  we note  that  

m - 1  

Urn-l(X) = 2"-~ l-I Ix  -- cos(krc/m)]. (15) 
k = l  

u._~(-x) = ( -  1)=-* u._,(x). 

These two results yield the formula 

m - 1  

U~_~(x) = 4 =-~ I-I [ x2 - cosZ(krc/m)]. 
k = l  

Fur thermore  one can show that  

1 1 
U~_~(x) - 2(I -- x2) [1 - Tzm(x)] = 2(t -- x 2) 

(16) 

and 

(17) 

[ I  - T,.(2x 2 - 1)], (IS) 

".,=, --II(= + + (=- (19) 

Theorem 1. If  R.(m) = K., x C. denotes the complete prism then 

n2"-1 [ - ( 1  11 ' '-1 =<=.<=II 

( + 2 =  + ° " "-' 

Proof. First we observe that  the adjacency matr ix  of G x H is the Kronecker  sum, 
cf [2], of the adjacency matrices of G and H. It is known that  the eigenvalues of the 
Kronecker  sum of two matrices are all possible sums of the individual matrices [2]. 
Now A(Km) has m - 1 eigenvalues equal to - 1 and one equal to m -- 1. Further-  
more  A(C~) has 2 cos(2rck/n) for 0 _.< k < n - 1 as its eigenvalues. Hence A(Km x C,) 
has as its eigenvalues 

m - 1  + 2cos(2nk/n) f o r 0 < k _ < n - 1  

and the following, each of order  m - 1 

- I  + 2 cos(2r&/n) f o r 0 _ < k _ < n - 1 .  

The degree of K,, x C. is m - 1 + 2. Hence by (2) 

1 . - 1  - I r a -1  . - 1  

) = -  [k__I~Io [m + 2 - 2cos(2rck/n)]l ]-I [2 - 2cos(2rck/n)]. (20) t(K= x C. nm k=l 

Now the second term in equat ion (20)is easily seen via (4) to be nt(C.)i Some simple 



Spanning Tree Formulas and Chebyshev Polynomials 195 

trigonometric manipulation then yields 

F n--1 Ira-1 
t(K m x Cn) = m ' - 2 - , M  [ m +  4 -- 4cos2(rrk/n)] . (21) 

Lk=l 

Thus by (17) we have 

t ( K  m x C,0 : nrn m-2 U)_ 1 ~k/ 4 }A 

By (18)and (19) we have the conclusion. []  

An interesting special case arises for m = 2, which is the prism K 2 x C,. Hence 

× c . ) :  2[(2 + , /5) -  + (2 - , / 5 ) . -  2 ;  

a result which was given in [4]. 
In the next section, we shall see that this cyclic prism (sometimes called a cycle 

permutation graph) has a tree formula quite similar to the formula for t(M,), the 
Moebius ladder tree formula. 

4. Simple Derivations of Some Known Tree Formulas 

The wheel W. = K~ + C._~ has been studied extensively. An explicit formula for 
t(W,) was derived by Sedl~ic~k [17]. We shall give a simple proof of that result 
subsequently. Now we merely note that, if x is any edge incident at the point of 
degree n in W.+~, then the multigraph W.+~/x has det A._~(3/2) as a cofactor of its 
Kirchhoff Matrix. Hence if we call such an edge x a spoke, then for any spoke x 

t(W,+l/x) = U,-1(3/2) = f2,. (22) 

The next theorem results from exploring a consequence of this observation; the 
formula was originally obtained by Hilton [8]. However, the proof here is quite 
simple. 

Theorem 2. Define a fan Fro+ 1 as Pm+ K1, then 

Proof. Let any edge y of IV,+ 1 that is not incident at the point of degree n be called 
a rim. Then IV,+ 1 - y = P, + K 1 - Fn+ 1. Furthermore we know that W.+l/x = 
U,_~(3/2) when x is a spoke. Thus we need only to show that t(W,+ 1 - y ) =  
t(W.+l/x). This can be verified by induction as follows. It is certainly true for n = 3. 
Next observe that W.+, - x results from subdividing a rim and W,+i/y results from 
adding an edge in parallel with a spoke. Thus by (6) and (7) 

- = t(w ) + t ( w .  - y )  

t(W.+,/y) = t(W.) + t(W~/x) 
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'Hence if 

then 

However 

Hence it follows that 
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t ( w .  - y )  = t ( w . / ~ )  

t(W.+ 1 -- x) = t (W.+l /y  ), 

t (w .~ , )  = t (w.+l  - ~) + t ( w . + ~ l ~ )  

= t ( w . + l  - y) + tiw.+~ly). 

t(W.+ 1 - y) --- t (W.+i / x  ). [] 

Now we show that Sedl~ic6k's formula for t(W.) [15] follows immediately from 
a similar approach. 

Theorem 3. Let  W. = K1 + C._i denotes an an point wheel. Then 

Proof. Following [12] we use H(i/j) to denote the submatrix obtained by deleting 
row i and column j of a matrix H. Thus if the Kirchhoff matrix of W. is H, where 
the last row and column correspond to the point of degree n - 1, we have 

n(n /n)  = 31._1 - A (C ._ I )  

where I k is the identity matrix of order k. Thus if v k denotes the eigenvalues of H, 
we have 

n - 2  n - 2  

t (W.)  = de tH(n /n )  = H Vk - 1-I [3 -- )~i(A(C._I))]. 
i = 0  i = 0  

Hence by (4) we have 

n - 2  

t (W.)  = ]-[ [3 - 2cos(2ni / (n - 1))] 
i = 0  

n - 2  

= H [ 5 -  4cosZ(rci(n- 1))] 

= U. ~_ 2(.v/5/2) by (17) 

= 2[T,_1(3/2 ) - 1] by (lS) 

Again the explicit formula follows from (19). [] 

Next we give a simple derivation of the formula for t(C2.). The formula was 
originally conjectured by Bedrosian and subsequently proven by Kleitman and 
Golden [I I]. The same formula was also conjectured by Boesch and Wang [5] 
(without knowledge of [11]). A different proof of the formula was given by Baron, 
Boesch, Prodinger, Tichy, and Wang [1]. The proof given below is simpler than 
either of the previous proofs. 
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Theorem 4. t(C~) = nf.2.for n >_ 5 

Proof. Since A(C~) is also a circulant, we can use the explicit formulas [121 for its 
eigenvalues as 

2i = 2 cos(Z~zi/n) + 2 cos(4rci/n) (for I _< i _< n), 

where n > 5 is assumed so that C ff is a graph. Substituting in (2) and using some 
simple trigonometric manipulation we get 

ln--1 
t(Cff) n k~=~ [1 + 4 cos2(nk/n)] [4 sinZ(rck/n)l . 

Recognizing that the second term in this expression is the same as (4), we see that 
the proof is equivalent to showing that 

n--1 
f 2  = I~ [1 + 4cos2(nk/n)] . 

k = l  

However by (17) we obtain 

n--1 
I-[ [1 + 4cos2(Tck/n)] = ( - I )  "-1 U2_1(1/2i) 
k=l 

where i = ~ .  
We now note that 

f .  = ( -  l f f  -x,/2 U._t(1/2i) 

by using the explicit formula (12) for U._ 1(1/2i) and composing the result with the 
explicit formula (13) for f . .  Thus the proof is completed. []  

Next we consider the Moebius ladder M. which may be defined as follows. 
Consider the cycle C2. and join every pair of points that are distance in apart on 
Cz. by an edge. The reason for the name is that this graph can be formed from 
K 2 x Pn by adding edge from the first point on one copy of P. to the last point on 
the second copy of P. and an edge from the first point on the second copy to the 
last point on the first copy. 

The next formula is stated without proof in Biggs [3] and Moon [133; the result 
is due to Sedlfic6k [19]. 

Theorem 5. 

t (M.)  = 2[(2 + x//-3)" + (2 -- x/~)" + 2] 

= n[T.(2) + 13 

Proof Again using the eigenvalue formula for a circulant [12] and substituting into 
(2) we get 

1 h n--1 
t(M.) = 2nn [4 -- 2cos[(2k -- 1)n/n)] I~ [2 - 2cos(2kn/n)3. 

k=l k=l 
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As before we use (4) to obtain 

n n 
t(M~) = ~ ~ [4 -- 2 cos((2k - 1)re/n)]. 

Now recall that in Theorem 1 we had that  

n--1 

t(K 2 x C.) = n I-[ [4 - 2 cos(2~k/n)]. 
k = l  

Hence 
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where all elements not shown are assumed to be zero• Then it is easily shown that  

° 

( l + x )  1 

--1 x 

?12 2n--1 

t(M.)t(K2 × C.) = T [-[ [4 - 2cos(k /n)3, 
k = l  

which can be reduced to 

n--1 

3n24"-I H [-4 - cos2(k~z/n)]. 
k=!  

Now invoking (17), (18), and (19) we get 

t(M,)t(K2 x C,) = -~ [(2 + x/3) 2" + (2 - x/~) z" - 2]. 

Using 

t(K z x C,)= 2[.(2 + x/~)" + (2 - x//3) " -  2] = n[.T~(2)- 1], 

the desired result is obtained. []  

We complete this section by noting that  a similar procedure gives a formula for 
t(L,), where L.  is the ladder K 2 x P,. This result, which is also due to Sedhicfik 
[18], is stated here as Theorem 6. 

Theorem 6. Let L. denote K 2 × P., then 

t(L,) = U,_1(2) = 2 ~ [ ( 2  + x / ~ ) " - ( 2 -  , f i ) " ] .  

Proof. First we digress to define the n × n matrix 

x - 1  

- 1  (1 + x) --1 

0 - 1  (1 + x) - 1  
B.(x)  = 
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Now the characteristic polynomial of the Kirchhoff matrix corresponding to L, is 

d e t I B " ( 2 ~ '  ] B . ( ; / ~ # ,  ] 

This is easily seen to be equal to 

det [B.(2 - #) - I .]  det[B.(2 - #) + I.] 

=/-t(/~ - 2, U . - 1 C - ~ )  U.-, C - ~ f f - )  • 

Using the fact that the roots of U._~(x) are cos(krc/n) for 1 _< k < n - 1, we obtain 
the eigenvalues # of the H matrix as 

0; 2; 211 - cos(krt/n)] for 1 _< k_< n - I; and 

2 [2 -cos (k r t / n ) ]  f o r l < k < n - 1 .  

Hence applying (1)together with (4) and (15) we get, 

2 .-1 .-1 
t(L.) = 2nn k=I~ [ 2 -  2cos(kz/n)] k=,I-I 2 [ 2 -  cos(krc/n)] 

1 
=--Un-l(1)Un-l(2)= (in-l(2) 

Again the explicit formula follows immediately from (12). []  

4. Conclusions 

By noting a connection between the Kirchhoff matrix and known properties of 
Chebyshev polynomials, we are led to simple proofs of explicit t(G) formulas for 
certain classes of graphs. The derivation of explicit tree formulas via Chebyshev 
polynomials does not appear to have been noted previously. Furthermore it leads 
to the following new compact version of known formulas: 

t(L.) = U~_x(2), 

t(W~) = 2[T._1(3/2 ) - 1], 

t(M.) = n[T.(2) + 13, 

t(Cff) = nf. 2, and 

t(Fm+,) =f2,,. 
We have also shown that there is a simple formula for t(R,(m)). In the latter 

case it could be said that there already existed a formula as the eigenvalues of 
A(R.(rn)) were known [16], and equation (2)was known. Thus equation (21)given 
in the proof of Theorem 1 follows by merely manipulating the results developed in 
[16]. However, the formula given herein is considerably simpler than equation (21). 
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